技巧
使用 peewee 收集技巧。有很酷的技巧想分享吗?在 GitHub 上打开一个问题 或 联系我。
乐观锁
乐观锁适用于通常使用SELECT FOR UPDATE(或在 SQLite 中使用BEGIN IMMEDIATE)的情况。例如,你可以从数据库中获取一条用户记录,进行一些修改,然后保存修改后的用户记录。通常情况下,此场景要求我们在事务期间锁定用户记录,从选择记录的那一刻到保存更改的那一刻。
另一方面,在乐观锁中,我们不获取任何锁,而是依赖于要修改的行中的内部版本列。在读取时,我们查看当前行的版本,在保存时,我们确保仅在版本与最初读取的版本相同的情况下才执行更新。如果版本较高,则其他一些进程一定已经潜入并更改了行 - 保存修改后的版本可能会导致丢失重要更改。
在 Peewee 中实现乐观锁非常简单,这里有一个基本类,你可以将其用作起点
from peewee import *
class ConflictDetectedException(Exception): pass
class BaseVersionedModel(Model):
version = IntegerField(default=1, index=True)
def save_optimistic(self):
if not self.id:
# This is a new record, so the default logic is to perform an
# INSERT. Ideally your model would also have a unique
# constraint that made it impossible for two INSERTs to happen
# at the same time.
return self.save()
# Update any data that has changed and bump the version counter.
field_data = dict(self.__data__)
current_version = field_data.pop('version', 1)
self._populate_unsaved_relations(field_data)
field_data = self._prune_fields(field_data, self.dirty_fields)
if not field_data:
raise ValueError('No changes have been made.')
ModelClass = type(self)
field_data['version'] = ModelClass.version + 1 # Atomic increment.
query = ModelClass.update(**field_data).where(
(ModelClass.version == current_version) &
(ModelClass.id == self.id))
if query.execute() == 0:
# No rows were updated, indicating another process has saved
# a new version. How you handle this situation is up to you,
# but for simplicity I'm just raising an exception.
raise ConflictDetectedException()
else:
# Increment local version to match what is now in the db.
self.version += 1
return True
以下是如何工作的示例。假设我们有以下模型定义。请注意,用户名上有一个唯一约束 - 这很重要,因为它提供了一种防止重复插入的方法。
class User(BaseVersionedModel):
username = CharField(unique=True)
favorite_animal = CharField()
示例
>>> u = User(username='charlie', favorite_animal='cat')
>>> u.save_optimistic()
True
>>> u.version
1
>>> u.save_optimistic()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "x.py", line 18, in save_optimistic
raise ValueError('No changes have been made.')
ValueError: No changes have been made.
>>> u.favorite_animal = 'kitten'
>>> u.save_optimistic()
True
# Simulate a separate thread coming in and updating the model.
>>> u2 = User.get(User.username == 'charlie')
>>> u2.favorite_animal = 'macaw'
>>> u2.save_optimistic()
True
# Now, attempt to change and re-save the original instance:
>>> u.favorite_animal = 'little parrot'
>>> u.save_optimistic()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "x.py", line 30, in save_optimistic
raise ConflictDetectedException()
ConflictDetectedException: current version is out of sync
每组的顶部对象
这些示例描述了查询每组单个顶部项的几种方法。要全面讨论各种技术,请查看我的博客文章 使用 Peewee ORM 查询组中的顶部项。如果你对查询顶部N 个项的更一般问题感兴趣,请参阅下面的章节 每组的顶部 N 个对象。
在这些示例中,我们将使用用户和推文模型来查找每个用户及其最近的推文。
我在测试中发现的最有效的方法是使用 MAX()
聚合函数。
我们将在非关联子查询中执行聚合,因此我们可以确信此方法将具有高性能。其思想是,我们将按作者对帖子进行选择,其时间戳等于该用户观察到的最大时间戳。
# When referencing a table multiple times, we'll call Model.alias() to create
# a secondary reference to the table.
TweetAlias = Tweet.alias()
# Create a subquery that will calculate the maximum Tweet created_date for each
# user.
subquery = (TweetAlias
.select(
TweetAlias.user,
fn.MAX(TweetAlias.created_date).alias('max_ts'))
.group_by(TweetAlias.user)
.alias('tweet_max_subquery'))
# Query for tweets and join using the subquery to match the tweet's user
# and created_date.
query = (Tweet
.select(Tweet, User)
.join(User)
.switch(Tweet)
.join(subquery, on=(
(Tweet.created_date == subquery.c.max_ts) &
(Tweet.user == subquery.c.user_id))))
SQLite 和 MySQL 稍微宽松一些,并允许按所选列的子集进行分组。这意味着我们可以取消子查询并简洁地表达它
query = (Tweet
.select(Tweet, User)
.join(User)
.group_by(Tweet.user)
.having(Tweet.created_date == fn.MAX(Tweet.created_date)))
每个组的 N 个首要对象
这些示例描述了以合理高效的方式查询每个组的顶部 N 个项目的几种方法。有关各种技术的详尽讨论,请查看我的博客文章 使用 Peewee ORM 查询每个组的顶部 N 个对象。
在这些示例中,我们将使用 User 和 Tweet 模型来查找每个用户及其最近的三条推文。
Postgres 横向连接
横向连接是一项简洁的 Postgres 功能,允许使用合理高效的相关子查询。它们通常被描述为 SQL for each
循环。
所需的 SQL 是
SELECT * FROM
(SELECT id, username FROM user) AS uq
LEFT JOIN LATERAL
(SELECT message, created_date
FROM tweet
WHERE (user_id = uq.id)
ORDER BY created_date DESC LIMIT 3)
AS pq ON true
使用 peewee 实现这一点非常简单
subq = (Tweet
.select(Tweet.message, Tweet.created_date)
.where(Tweet.user == User.id)
.order_by(Tweet.created_date.desc())
.limit(3))
query = (User
.select(User, subq.c.content, subq.c.created_date)
.join(subq, JOIN.LEFT_LATERAL)
.order_by(User.username, subq.c.created_date.desc()))
# We queried from the "perspective" of user, so the rows are User instances
# with the addition of a "content" and "created_date" attribute for each of
# the (up-to) 3 most-recent tweets for each user.
for row in query:
print(row.username, row.content, row.created_date)
要从 Tweet 模型的“透视图”实现等效查询,我们可以改写为
# subq is the same as the above example.
subq = (Tweet
.select(Tweet.message, Tweet.created_date)
.where(Tweet.user == User.id)
.order_by(Tweet.created_date.desc())
.limit(3))
query = (Tweet
.select(User.username, subq.c.content, subq.c.created_date)
.from_(User)
.join(subq, JOIN.LEFT_LATERAL)
.order_by(User.username, subq.c.created_date.desc()))
# Each row is a "tweet" instance with an additional "username" attribute.
# This will print the (up-to) 3 most-recent tweets from each user.
for tweet in query:
print(tweet.username, tweet.content, tweet.created_date)
窗口函数
窗口函数(受 peewee 支持)提供可扩展的高效性能。
所需的 SQL 是
SELECT subq.message, subq.username
FROM (
SELECT
t2.message,
t3.username,
RANK() OVER (
PARTITION BY t2.user_id
ORDER BY t2.created_date DESC
) AS rnk
FROM tweet AS t2
INNER JOIN user AS t3 ON (t2.user_id = t3.id)
) AS subq
WHERE (subq.rnk <= 3)
要使用 peewee 实现这一点,我们将把排名的推文包装在执行过滤的外查询中。
TweetAlias = Tweet.alias()
# The subquery will select the relevant data from the Tweet and
# User table, as well as ranking the tweets by user from newest
# to oldest.
subquery = (TweetAlias
.select(
TweetAlias.message,
User.username,
fn.RANK().over(
partition_by=[TweetAlias.user],
order_by=[TweetAlias.created_date.desc()]).alias('rnk'))
.join(User, on=(TweetAlias.user == User.id))
.alias('subq'))
# Since we can't filter on the rank, we are wrapping it in a query
# and performing the filtering in the outer query.
query = (Tweet
.select(subquery.c.message, subquery.c.username)
.from_(subquery)
.where(subquery.c.rnk <= 3))
其他方法
如果您不使用 Postgres,那么不幸的是,您只剩下性能不太理想的选项。有关常用方法的更完整概述,请查看 这篇博客文章。下面我将总结这些方法和相应的 SQL。
使用 COUNT
,我们可以获取所有推文,其中存在少于 N 条时间戳较新的推文
TweetAlias = Tweet.alias()
# Create a correlated subquery that calculates the number of
# tweets with a higher (newer) timestamp than the tweet we're
# looking at in the outer query.
subquery = (TweetAlias
.select(fn.COUNT(TweetAlias.id))
.where(
(TweetAlias.created_date >= Tweet.created_date) &
(TweetAlias.user == Tweet.user)))
# Wrap the subquery and filter on the count.
query = (Tweet
.select(Tweet, User)
.join(User)
.where(subquery <= 3))
我们可以通过进行自连接并在 HAVING
子句中执行过滤来实现类似的结果
TweetAlias = Tweet.alias()
# Use a self-join and join predicates to count the number of
# newer tweets.
query = (Tweet
.select(Tweet.id, Tweet.message, Tweet.user, User.username)
.join(User)
.switch(Tweet)
.join(TweetAlias, on=(
(TweetAlias.user == Tweet.user) &
(TweetAlias.created_date >= Tweet.created_date)))
.group_by(Tweet.id, Tweet.content, Tweet.user, User.username)
.having(fn.COUNT(Tweet.id) <= 3))
最后一个示例在相关子查询中使用 LIMIT
子句。
TweetAlias = Tweet.alias()
# The subquery here will calculate, for the user who created the
# tweet in the outer loop, the three newest tweets. The expression
# will evaluate to `True` if the outer-loop tweet is in the set of
# tweets represented by the inner query.
query = (Tweet
.select(Tweet, User)
.join(User)
.where(Tweet.id << (
TweetAlias
.select(TweetAlias.id)
.where(TweetAlias.user == Tweet.user)
.order_by(TweetAlias.created_date.desc())
.limit(3))))
使用 SQLite 编写自定义函数
SQLite 非常容易扩展,可以使用 Python 编写的自定义函数,然后从 SQL 语句中调用这些函数。通过使用 SqliteExtDatabase
和 func()
装饰器,您可以非常轻松地定义自己的函数。
这是一个生成用户提供的密码的哈希版本的示例函数。我们还可以使用它来实现 login
功能,以匹配用户和密码。
from hashlib import sha1
from random import random
from playhouse.sqlite_ext import SqliteExtDatabase
db = SqliteExtDatabase('my-blog.db')
def get_hexdigest(salt, raw_password):
data = salt + raw_password
return sha1(data.encode('utf8')).hexdigest()
@db.func()
def make_password(raw_password):
salt = get_hexdigest(str(random()), str(random()))[:5]
hsh = get_hexdigest(salt, raw_password)
return '%s$%s' % (salt, hsh)
@db.func()
def check_password(raw_password, enc_password):
salt, hsh = enc_password.split('$', 1)
return hsh == get_hexdigest(salt, raw_password)
以下是如何使用该函数添加新用户,存储哈希密码
query = User.insert(
username='charlie',
password=fn.make_password('testing')).execute()
如果我们从数据库中检索用户,则存储的密码已哈希并加盐
>>> user = User.get(User.username == 'charlie')
>>> print(user.password)
b76fa$88be1adcde66a1ac16054bc17c8a297523170949
要实现 login
类型功能,您可以编写类似这样的内容
def login(username, password):
try:
return (User
.select()
.where(
(User.username == username) &
(fn.check_password(password, User.password) == True))
.get())
except User.DoesNotExist:
# Incorrect username and/or password.
return False
日期计算
Peewee 支持的每个数据库都实现了它们自己的日期/时间算术函数和语义集。
本部分将提供一个简短的场景和示例代码,演示如何利用 Peewee 在 SQL 中执行动态日期操作。
场景:我们需要每隔 X 秒运行某些任务,并且任务间隔和任务本身都在数据库中定义。我们需要编写一些代码,告诉我们应该在给定时间运行哪些任务
class Schedule(Model):
interval = IntegerField() # Run this schedule every X seconds.
class Task(Model):
schedule = ForeignKeyField(Schedule, backref='tasks')
command = TextField() # Run this command.
last_run = DateTimeField() # When was this run last?
我们的逻辑本质上归结为
# e.g., if the task was last run at 12:00:05, and the associated interval
# is 10 seconds, the next occurrence should be 12:00:15. So we check
# whether the current time (now) is 12:00:15 or later.
now >= task.last_run + schedule.interval
因此,我们可以编写以下代码
next_occurrence = something # ??? how do we define this ???
# We can express the current time as a Python datetime value, or we could
# alternatively use the appropriate SQL function/name.
now = Value(datetime.datetime.now()) # Or SQL('current_timestamp'), e.g.
query = (Task
.select(Task, Schedule)
.join(Schedule)
.where(now >= next_occurrence))
对于 Postgresql,我们将乘以一个静态的 1 秒间隔来动态计算偏移量
second = SQL("INTERVAL '1 second'")
next_occurrence = Task.last_run + (Schedule.interval * second)
对于 MySQL,我们可以直接引用计划的间隔
from peewee import NodeList # Needed to construct sql entity.
interval = NodeList((SQL('INTERVAL'), Schedule.interval, SQL('SECOND')))
next_occurrence = fn.date_add(Task.last_run, interval)
对于 SQLite,事情有点棘手,因为 SQLite 没有专用的日期时间类型。因此,对于 SQLite,我们转换为 Unix 时间戳,添加计划秒数,然后转换回可比较的日期时间表示
next_ts = fn.strftime('%s', Task.last_run) + Schedule.interval
next_occurrence = fn.datetime(next_ts, 'unixepoch')